
UC Santa Barbara

Finding Vulnerabilities
in Embedded Software

Christopher Kruegel
UC Santa Barbara

UC Santa Barbara

What are we talking about?

1.  firmware and security
2.  binary vulnerability

analysis
3.  vulnerability models
4.  automation

2

UC Santa Barbara

Blend between real and virtual worlds

•  Embedded software is everywhere
–  captured through many buzzwords

•  pervasive, ubiquitous computing
•  Internet of Things (IoT)

–  sensors and actuators

3

UC Santa Barbara

The “Internet of Things”

4

UC Santa Barbara

Increase in Lines of Code

5

UC Santa Barbara

Security Challenges

•  Quantity has a quality all its own

•  Vulnerability analysis
–  binary blobs (binary only, no OS or library abstractions)
–  software deeply connected with hardware

•  Patch management
–  devices must be cheap
–  vendors might be long gone

6

UC Santa Barbara

Security Challenges

•  Remote accessibility
–  device authentication
–  access control (pacemaker during emergency)
–  stepping stone into inside of perimeter

•  Additional vulnerability surface
–  attacks launched from physical world
–  supply chain attacks

•  Getting access to the firmware

7

UC Santa Barbara

8

UC Santa Barbara

BINARY VULNERABILITY
ANALYSIS

9

UC Santa Barbara

Ones

Source Code

Type Information

Control Flow

Symbols

Binary Code

Zeroes

10

Binary Analysis

UC Santa Barbara

•  Binary code is the worst-case, common
denominator scenario

11

Binary Analysis

UC Santa Barbara

Symbolic Execution

"How do I trigger path X or condition Y?"

•  Dynamic analysis
–  Input A? No. Input B? No. Input C? …
–  Based on concrete inputs to application

•  (Concrete) static analysis
–  "You can't” / "You might be able to”
–  based on various static techniques

•  We need something slightly different

12

UC Santa Barbara

Symbolic Execution

"How do I trigger path X or condition Y?"

•  Interpret the application, keeping input values
abstract (symbolic)

•  Track "constraints" on variables
•  When a condition is triggered, "concretize" to obtain a

possible input

13

UC Santa Barbara

Symbolic Execution - Example

x = int(input())
if x >= 10:
 if x < 100:
 vulnerable_code()
 else:
 func_a()
else:
 func_b()

14

UC Santa Barbara

Symbolic Execution - Example

x = int(input())
if x >= 10:
 if x < 100:
 vulnerable_code()
 else:
 func_a()
else:
 func_b()

State A

Variables

x = ???

Constraints

15

UC Santa Barbara

x = int(input())
if x >= 10:
 if x < 100:
 vulnerable_code()
 else:
 func_a()
else:
 func_b()

Symbolic Execution - Example

State A

Variables

x = ???

Constraints

State AA

Variables

x = ???

Constraints

x < 10

State AB

Variables

x = ???

Constraints

x >= 10
16

UC Santa Barbara

x = int(input())
if x >= 10:
 if x < 100:
 vulnerable_code()
 else:
 func_a()
else:
 func_b()

Symbolic Execution - Example

State AA

Variables

x = ???

Constraints

x < 10

State AB

Variables

x = ???

Constraints

x >= 10

17

UC Santa Barbara

x = int(input())
if x >= 10:
 if x < 100:
 vulnerable_code()
 else:
 func_a()
else:
 func_b()

Symbolic Execution - Example

State AA

Variables

x = ???

Constraints

x < 10

State AB

Variables

x = ???

Constraints

x >= 10

State ABA

Variables

x = ???

Constraints

x >= 10
x < 100

State ABB

Variables

x = ???

Constraints

x >= 10
x >= 100 18

UC Santa Barbara

x = int(input())
if x >= 10:
 if x < 100:
 vulnerable_code()
 else:
 func_a()
else:
 func_b()

Symbolic Execution - Example

State ABA

Variables

x = ???

Constraints

x >= 10
x < 100

Concretized
ABA

Variables

x = 99

19

UC Santa Barbara

Symbolic Execution - Pros and Cons

Pros

•  Precise
•  No false positives

–  with correct environment
model

•  Produces directly-
actionable inputs

Cons

•  Not easily scalable
–  constraint solving is NP-

complete
–  state and path explosion

20

UC Santa Barbara

angr

Framework for the analysis of binaries,
developed at UCSB

21

UC Santa Barbara

angr Components

Static Analysis Routines

Symbolic Execution Engine

Control-Flow Graph

Data-Flow Analysis

Binary Loader

Value-Set Analysis

angr

Forward Symbolic Execution

Under-constrained SE

22

UC Santa Barbara

Open	Source	Analysis	Pla2orm	
	
•  More	than	100	KLOC	
	
•  More	than	10K	commits	

•  More	than	30K	downloads	in	
2017	

•  1,600+	stars	on	Github	

•  Users	in	industry,	academia,	
government	

	

angr Platform

23

UC Santa Barbara

angr - Challenges and Goals

Scalability	

Precision	New	Models	of	
Malice	

24

UC Santa Barbara

angr - Challenges and Goals

Scalability	

Precision	New	Models	of	
Malice	

Ability	to	compose	different	
analyses	is	very	powerful	

25

UC Santa Barbara

9.50%

10.00%

10.50%

11.00%

11.50%

12.00%

Base Optimized
Core

Symbolic Execution Improvements

•  Fastpath and adaptive
concretization

– when possible, analyze parts of code
non symbolically

•  Peephole optimization

–  replace code snippets that blow up
symbolic execution

•  Lazy constraint solving

–  sometimes, waiting to add more
constraints makes solving easier

26

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

Base Optimized
Core

UC Santa Barbara

Constraint Solver Optimizations

•  Solution caching
–  don’t run solver on same constraints

multiple times

•  Constraint subset management
–  break up hard constraints into subparts

and solve separately

•  Expression simplification
–  before submitting constraints, simplify

•  Expression rewriting

27

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

UC Santa Barbara

Static Analysis Support

•  Veritesting
–  SSE to merge over multiple paths

•  LESE - loop extended sym exec
–  intelligent loop unrolling

•  Code summarization (Dodo)
–  automatically (and statically)

summarize effect of loops / functions

•  VSA - value set analysis
–  resolve ranges (and conditionals)

without solving constraints
28

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

UC Santa Barbara

American Fuzzy Lop (AFL)

29

UC Santa Barbara

American Fuzzy Lop (AFL)

30

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

50.00%

Base Optimized Core Veritesting LESE Dodo AFL

UC Santa Barbara

Combining Approaches

•  angr can be used in combination with other tools

•  Fuzzing excels at producing general inputs
•  Symbolic execution is able to satisfy complex path

predicates for specific inputs

•  Key Insight
–  combine both techniques to leverage their strengths and

mitigate their weaknesses

31

UC Santa Barbara

Driller = AFL + angr

Fuzzing

good at finding
solutions for general

inputs

Symbolic
Execution

good at find solutions

for specific inputs

32

UC Santa Barbara

username	=	input()	
password	=	input()	
if	password	==	"secret":	
				complex_function()	
				command	=	input()	
				if	command	==	"C”:	
								crash()	
				else:	
								print	"Unknown	command”	
else:	
				complex_function()	
				if	len(username)	<	5:	

					print	"Invalid	username!”	
				else:	
								print	"Auth	failure!”	
				print	"Try	again..."	
return	

Driller Example

33

UC Santa Barbara

username	=	input()	
password	=	input()	
if	password	==	"secret":	
				complex_function()	
				command	=	input()	
				if	command	==	"C”:	
								crash()	
				else:	
								print	"Unknown	command”	
else:	
				complex_function()	
				if	len(username)	<	5:	

					print	"Invalid	username!”	
				else:	
								print	"Auth	failure!”	
				print	"Try	again..."	
return	

Driller Example
Test Cases

“asDA:sAAA”

“asdf:AAAA”

“aDAAA:sAAA”

“asDAL:sAAAt”

“axOO:sABBX”

“asOO:sABX”

34

UC Santa Barbara

username	=	input()	
password	=	input()	
if	password	==	"secret":	
				complex_function()	
				command	=	input()	
				if	command	==	"C”:	
								crash()	
				else:	
								print	"Unknown	command”	
else:	
				complex_function()	
				if	len(username)	<	5:	

					print	"Invalid	username!”	
				else:	
								print	"Auth	failure!”	
				print	"Try	again..."	
return	

Driller Example
Constraints

username = ???
password = ???

password
!=

"secret"

password
==

"secret"

35

UC Santa Barbara

username	=	input()	
password	=	input()	
if	password	==	"secret":	
				complex_function()	
				command	=	input()	
				if	command	==	"C”:	
								crash()	
				else:	
								print	"Unknown	command”	
else:	
				complex_function()	
				if	len(username)	<	5:	

					print	"Invalid	username!”	
				else:	
								print	"Auth	failure!”	
				print	"Try	again..."	
return	

Driller Example

36

Test Cases

“asdf:ljafe”

“asdf:secret”

“aDAA:secret”

“aaDAA:etsf”

UC Santa Barbara

username	=	input()	
password	=	input()	
if	password	==	"secret":	
				complex_function()	
				command	=	input()	
				if	command	==	"C”:	
								crash()	
				else:	
								print	"Unknown	command”	
else:	
				complex_function()	
				if	len(username)	<	5:	

					print	"Invalid	username!”	
				else:	
								print	"Auth	failure!”	
				print	"Try	again..."	
return	

Driller Example
Constraints

username = ???
password = ???

password
!=

"secret"

password
==

"secret"

command
==
"C"

37

UC Santa Barbara

username	=	input()	
password	=	input()	
if	password	==	"secret":	
				complex_function()	
				command	=	input()	
				if	command	==	"C”:	
								crash()	
				else:	
								print	"Unknown	command”	
else:	
				complex_function()	
				if	len(username)	<	5:	

					print	"Invalid	username!”	
				else:	
								print	"Auth	failure!”	
				print	"Try	again..."	
return	

Driller Example

38

UC Santa Barbara

Impact of Driller

 Applicability varies by program. Where it was needed, Driller increased
block coverage by an average of 71%.

B
as

ic
 B

lo
ck

 C
ov

er
ag

e

Time

39

UC Santa Barbara

Impact of Driller

40

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

AFL Driller

UC Santa Barbara

Failed Attempts (aka Future Research)

•  State management
–  duplicate state detection

•  Path selection to reach “promising” parts of
the program
–  heuristics that guide analysis to areas that are

more likely vulnerable

41

UC Santa Barbara

VULNERABILITY MODELS

42

UC Santa Barbara

Interesting Vulnerabilities

•  Memory safety vulnerabilities
–  buffer overrun
–  out of bounds reads (heartbleed)
–  write-what-where

•  Authentication bypass (backdoors)

•  Actuator control

43

UC Santa Barbara

Show me recorded video.

Please authenticate.

chris:<REDACTED>

Authentication Successful!

Here is the video.

Authentication Bypass

44

UC Santa Barbara

Show me recorded video.

Please authenticate.

service:service

Authentication Successful!

Here is the video.

Authentication Bypass

45

UC Santa Barbara

46

service:service	

UC Santa Barbara

Authentication Bypass

47

Prompt	

AuthenLcaLon	

Success	 Failure	

UC Santa Barbara

Authentication Bypass

48

Prompt	

AuthenLcaLon	

Success	 Failure	

Backdoor	
e.g.,	strcmp()	

UC Santa Barbara

Authentication Bypass

49

Prompt	

AuthenLcaLon	

Success	 Failure	

Backdoor	
e.g.,	strcmp()	

Hard	to	find.	

UC Santa Barbara

Authentication Bypass

50

Prompt	

Success	

Missing!	

UC Santa Barbara

Modeling Authentication Bypass

51

Prompt	

AuthenLcaLon	

Success	 Failure	

Backdoor	
e.g.,	strcmp()	

	

Easier	to	find!	

Hard	to	find.	

UC Santa Barbara

Input Determinism

52

Prompt	

AuthenLcaLon	

Success	 Failure	

Backdoor	
e.g.,	strcmp()	

	

Can	we	determine		
the	input	needed	to		
reach	the	success	
funcLon,	just	by		
analyzing	the	code?	
	
The	answer	is	NO	

UC Santa Barbara

Input Determinism

53

Prompt	

AuthenLcaLon	

Success	 Failure	

Backdoor	
e.g.,	strcmp()	

	

Can	we	determine		
the	input	needed	to		
reach	the	success	
funcLon,	just	by		
analyzing	the	code?	
	
The	answer	is	YES	

UC Santa Barbara

Modeling Authentication Bypass

54

Prompt	

AuthenLcaLon	

Success	 Failure	

Backdoor	
e.g.,	strcmp()	

	
Easier	to	find!	
	
	
But	how?	

UC Santa Barbara

Finding “Authenticated Point”

•  Without OS/ABI information

•  With ABI information

55

EXEC()	

UC Santa Barbara

"Authentication	
Successful!"	

-  static analysis (data
references, system calls)

-  human analyst fallback

Identify Authenticated Point

56

UC Santa Barbara

-  static analysis (program
slicing)

"Authentication	
Successful!"	

Compute Authentication Slice

57

UC Santa Barbara

 authenticated path

Path Collection

58

 authenticated path

UC Santa Barbara

Vulnerability Detection

59

	
"service:
service"	

"AAA:
XXX"	
"BBB:
YYY"	
"CCC:
ZZZ"	
...	

-  can the attacker determine a
concrete authenticating input
via program analysis?

UC Santa Barbara

Bootloader Vulnerabilities

60

UC Santa Barbara

BL1/BootROM

BL2 BL31

Android Kernel
(boot)

Trusted OS (tz)

BL33

EL
3

EL
1

Secure World

Non-Secure
World

Trusted Apps

Android Framework/
Apps (system/data)

EL
0

Writeable
Storage

Bootloader Vulnerabilities

61

UC Santa Barbara

Two Malice Models

Memory Corruption

 "Is data, read from
writeable storage, used
unsafely in memory
operations?"

 (can result in bricking,
device compromise, and
even TrustZone
compromise!)

Unsafe Unlock

 "Can the device be unlocked
without triggering a user data
wipe?"

 (can result in data
compromise)

62

UC Santa Barbara

	
MulL-tag	
Taint	

PropagaLon	
	

Under-
constrained	
Symbolic	
ExecuLon	

Taint	Sources	

Writeable	
Storage	

Symbolic Taint Propagation

Taint	Sinks	
-  memory	
dereferences	

-  memcpy	
-  loop	
condiLons	

	
	

Writeable
Storage

63

UC Santa Barbara

Results

Bootloader	 Sources	 Sinks	 Alerts	 Memory	
Bugs	

Unsafe	
Unlock	

Qualcomm	
(Latest)	

2	 1	 0	 0	 1	

Qualcomm	(Old)	 3	 1	 4	 1	 1	

NVIDIA	 6	 1	 1	 1	 0	

HiSilicon/Huawei	 20	 4	 15	 5	 1	

MediaTek	 2	 2	 -	 -	 -	

Total	 33	 9	 20	 7	 3	

64

UC Santa Barbara

AUTOMATING
VULNERABILITY ANALYSIS

65

UC Santa Barbara

From Tools Supporting Humans …

66

High effectiveness

Low scalability

UC Santa Barbara

… To Fully Automated Analysis

67

High scalability

UC Santa Barbara

DARPA Grand Challenges

Self-driving Cars Robots

68

UC Santa Barbara

DARPA Cyber Grand Challenge

Programs!

69

UC Santa Barbara

DARPA	Cyber	Grand	Challenge	(CGC)	

70

UC Santa Barbara

DARPA Cyber Grand Challenge

•  CTF-style competition
•  Autonomous Cyber-Reasoning Systems (CRSs)

attack and defend a number of services (binaries)

•  No human in the loop

•  A first qualification round decided the 7 finalists

•  Final event was on August 4, 2016 during DefCon
–  Shellphish came in 3rd place

•  Significant cash prizes
–  750K for qualification, 2M for win (750K for 3rd place)

71

UC Santa Barbara

CGC Results

72

UC Santa Barbara

Summary

•  Internet of Things
–  explosive growth of devices with embedded software
–  many interesting security challenges

•  Binary analysis
–  key tool to hunt for IOT vulnerabilities
–  delivers powerful results, but faces scalability issues
–  promising approach is to combine analysis techniques
 (e.g., fuzzing and symbolic execution)

•  angr
–  UCSB open-source binary analysis software

73

UC Santa Barbara

Thank You!

74

