
UC Santa Barbara 

Finding Vulnerabilities  
in Embedded Software 

Christopher Kruegel 
UC Santa Barbara 



UC Santa Barbara 

What are we talking about? 

1.  firmware and security 
2.  binary vulnerability 

analysis 
3.  vulnerability models 
4.  automation 
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Blend between real and virtual worlds 

•  Embedded software is everywhere 
–  captured through many buzzwords 

•  pervasive, ubiquitous computing 
•  Internet of Things (IoT) 

–  sensors and actuators 
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The “Internet of Things” 
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Increase in Lines of Code 
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Security Challenges 

•  Quantity has a quality all its own 

•  Vulnerability analysis 
–  binary blobs (binary only, no OS or library abstractions) 
–  software deeply connected with hardware 

•  Patch management 
–  devices must be cheap 
–  vendors might be long gone 
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Security Challenges 

•  Remote accessibility 
–  device authentication 
–  access control (pacemaker during emergency) 
–  stepping stone into inside of perimeter 

•  Additional vulnerability surface 
–  attacks launched from physical world 
–  supply chain attacks 

•  Getting access to the firmware 
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BINARY VULNERABILITY 
ANALYSIS 
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Ones 

Source Code 

Type Information 

Control Flow 

Symbols 

Binary Code 

Zeroes 
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•  Binary code is the worst-case, common 
denominator scenario 
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Symbolic Execution 

"How do I trigger path X or condition Y?" 

•  Dynamic analysis 
–  Input A? No. Input B? No. Input C? … 
–  Based on concrete inputs to application 

•  (Concrete) static analysis 
–  "You can't” / "You might be able to” 
–  based on various static techniques 

•  We need something slightly different 
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Symbolic Execution 

"How do I trigger path X or condition Y?" 

•  Interpret the application, keeping input values 
abstract (symbolic) 

•  Track "constraints" on variables 
•  When a condition is triggered, "concretize" to obtain a 

possible input 
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Symbolic Execution - Example 

x = int(input())
if x >= 10:
  if x < 100:
    vulnerable_code()
  else:
    func_a()
else:
  func_b()
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Symbolic Execution - Example 

x = int(input())
if x >= 10:
  if x < 100:
    vulnerable_code()
  else:
    func_a()
else:
  func_b()

State A 

Variables 
 

x = ??? 

Constraints 
 

------ 
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x = int(input())
if x >= 10:
  if x < 100:
    vulnerable_code()
  else:
    func_a()
else:
  func_b()

Symbolic Execution - Example 

State A 

Variables 
 

x = ??? 

Constraints 
 

------ 

State AA 

Variables 
 

x = ??? 

Constraints 
 

x < 10 

State AB 

Variables 
 

x = ??? 

Constraints 
 

x >= 10 
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x = int(input())
if x >= 10:
  if x < 100:
    vulnerable_code()
  else:
    func_a()
else:
  func_b()

Symbolic Execution - Example 

State AA 

Variables 
 

x = ??? 

Constraints 
 

x < 10 

State AB 

Variables 
 

x = ??? 

Constraints 
 

x >= 10 
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x = int(input())
if x >= 10:
  if x < 100:
    vulnerable_code()
  else:
    func_a()
else:
  func_b()

Symbolic Execution - Example 

State AA 

Variables 
 

x = ??? 

Constraints 
 

x < 10 

State AB 

Variables 
 

x = ??? 

Constraints 
 

x >= 10 

State ABA 

Variables 
 

x = ??? 

Constraints 
 

x >= 10 
x < 100 

State ABB 

Variables 
 

x = ??? 

Constraints 
 

x >= 10 
x >= 100 18
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x = int(input())
if x >= 10:
  if x < 100:
    vulnerable_code()
  else:
    func_a()
else:
  func_b()

Symbolic Execution - Example 

State ABA 

Variables 
 

x = ??? 

Constraints 
 

x >= 10 
x < 100 

Concretized 
ABA 

Variables 
 

x = 99 
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Symbolic Execution - Pros and Cons 

Pros 

•  Precise 
•  No false positives 

–  with correct environment 
model 

•  Produces directly-
actionable inputs 

Cons 

•  Not easily scalable 
–  constraint solving is NP-

complete 
–  state and path explosion 
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angr 

Framework for the analysis of binaries, 
developed at UCSB 
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angr Components 

Static Analysis Routines 

Symbolic Execution Engine 

Control-Flow Graph 

Data-Flow Analysis 

Binary Loader 

Value-Set Analysis 

angr 

Forward Symbolic Execution 

Under-constrained SE 
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Open	Source	Analysis	Pla2orm	
	
•  More	than	100	KLOC	
	
•  More	than	10K	commits	

•  More	than	30K	downloads	in	
2017	

•  1,600+	stars	on	Github	

•  Users	in	industry,	academia,	
government	

	

angr Platform 
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angr - Challenges and Goals 

Scalability	

Precision	New	Models	of	
Malice	
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angr - Challenges and Goals 

Scalability	

Precision	New	Models	of	
Malice	

Ability	to	compose	different	
analyses	is	very	powerful	
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Symbolic Execution Improvements 

•  Fastpath and adaptive 
concretization 

– when possible, analyze parts of code 
non symbolically 

 
•  Peephole optimization 

–  replace code snippets that blow up 
symbolic execution 

 
•  Lazy constraint solving 

–  sometimes, waiting to add more 
constraints makes solving easier  

26

0.00% 

2.00% 

4.00% 

6.00% 

8.00% 

10.00% 

12.00% 

14.00% 

Base Optimized 
Core 



UC Santa Barbara 

Constraint Solver Optimizations 

•  Solution caching 
–  don’t run solver on same constraints 

multiple times 

•  Constraint subset management 
–  break up hard constraints into subparts 

and solve separately 

•  Expression simplification 
–  before submitting constraints, simplify 

•  Expression rewriting 
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Static Analysis Support 

•  Veritesting 
–  SSE to merge over multiple paths 

•  LESE - loop extended sym exec 
–  intelligent loop unrolling 

•  Code summarization (Dodo) 
–  automatically (and statically) 

summarize effect of loops / functions 

•  VSA - value set analysis 
–  resolve ranges (and conditionals) 

without solving constraints 
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American Fuzzy Lop (AFL) 
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American Fuzzy Lop (AFL) 
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Combining Approaches 

•  angr can be used in combination with other tools 
 

•  Fuzzing excels at producing general inputs 
•  Symbolic execution is able to satisfy complex path 

predicates for specific inputs 

•  Key Insight 
–  combine both techniques to leverage their strengths and 

mitigate their weaknesses 
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Driller = AFL + angr 

Fuzzing 
 

good at finding 
solutions for general 

inputs 

Symbolic 
Execution 

 
good at find solutions 

for specific inputs 
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username	=	input()	
password	=	input()	
if	password	==	"secret":	
				complex_function()	
				command	=	input()	
				if	command	==	"C”:	
								crash()	
				else:	
								print	"Unknown	command”	
else:	
				complex_function()	
				if	len(username)	<	5:	

					print	"Invalid	username!”	
				else:	
								print	"Auth	failure!”	
				print	"Try	again..."	
return	

Driller Example 
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username	=	input()	
password	=	input()	
if	password	==	"secret":	
				complex_function()	
				command	=	input()	
				if	command	==	"C”:	
								crash()	
				else:	
								print	"Unknown	command”	
else:	
				complex_function()	
				if	len(username)	<	5:	

					print	"Invalid	username!”	
				else:	
								print	"Auth	failure!”	
				print	"Try	again..."	
return	

Driller Example 
Test Cases 

“asDA:sAAA” 

“asdf:AAAA” 

“aDAAA:sAAA” 

“asDAL:sAAAt” 

“axOO:sABBX” 

“asOO:sABX” 
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username	=	input()	
password	=	input()	
if	password	==	"secret":	
				complex_function()	
				command	=	input()	
				if	command	==	"C”:	
								crash()	
				else:	
								print	"Unknown	command”	
else:	
				complex_function()	
				if	len(username)	<	5:	

					print	"Invalid	username!”	
				else:	
								print	"Auth	failure!”	
				print	"Try	again..."	
return	

Driller Example 
Constraints 

username = ??? 
password = ??? 

password 
!= 

"secret" 

password 
== 

"secret" 
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username	=	input()	
password	=	input()	
if	password	==	"secret":	
				complex_function()	
				command	=	input()	
				if	command	==	"C”:	
								crash()	
				else:	
								print	"Unknown	command”	
else:	
				complex_function()	
				if	len(username)	<	5:	

					print	"Invalid	username!”	
				else:	
								print	"Auth	failure!”	
				print	"Try	again..."	
return	

Driller Example 
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“asdf:ljafe” 

“asdf:secret” 

“aDAA:secret” 

“aaDAA:etsf” 
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username	=	input()	
password	=	input()	
if	password	==	"secret":	
				complex_function()	
				command	=	input()	
				if	command	==	"C”:	
								crash()	
				else:	
								print	"Unknown	command”	
else:	
				complex_function()	
				if	len(username)	<	5:	

					print	"Invalid	username!”	
				else:	
								print	"Auth	failure!”	
				print	"Try	again..."	
return	

Driller Example 
Constraints 

username = ??? 
password = ??? 

password 
!= 

"secret" 

password 
== 

"secret" 

command 
== 
"C" 
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username	=	input()	
password	=	input()	
if	password	==	"secret":	
				complex_function()	
				command	=	input()	
				if	command	==	"C”:	
								crash()	
				else:	
								print	"Unknown	command”	
else:	
				complex_function()	
				if	len(username)	<	5:	

					print	"Invalid	username!”	
				else:	
								print	"Auth	failure!”	
				print	"Try	again..."	
return	

Driller Example 
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Impact of Driller 

 Applicability varies by program. Where it was needed, Driller increased 
block coverage by an average of 71%. 
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Impact of Driller 
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Failed Attempts (aka Future Research) 

•  State management 
–  duplicate state detection 

•  Path selection to reach “promising” parts of 
the program 
–  heuristics that guide analysis to areas that are 

more likely vulnerable 
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VULNERABILITY MODELS 
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Interesting Vulnerabilities 

•  Memory safety vulnerabilities 
–  buffer overrun 
–  out of bounds reads (heartbleed) 
–  write-what-where 

•  Authentication bypass (backdoors) 

•  Actuator control 

43 



UC Santa Barbara 

Show me recorded video. 

Please authenticate. 

chris:<REDACTED> 

Authentication Successful! 

Here is the video. 

Authentication Bypass 
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Show me recorded video. 

Please authenticate. 

service:service 

Authentication Successful! 

Here is the video. 

Authentication Bypass 
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service:service	
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Authentication Bypass 
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Prompt	

AuthenLcaLon	

Success	 Failure	
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Authentication Bypass 
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Prompt	

AuthenLcaLon	

Success	 Failure	

Backdoor	
e.g.,	strcmp()	
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Authentication Bypass 
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Prompt	

AuthenLcaLon	

Success	 Failure	

Backdoor	
e.g.,	strcmp()	

Hard	to	find.	
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Authentication Bypass 

50 

Prompt	

Success	

Missing!	
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Modeling Authentication Bypass 
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Prompt	

AuthenLcaLon	

Success	 Failure	

Backdoor	
e.g.,	strcmp()	

	

Easier	to	find!	

Hard	to	find.	
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Input Determinism 
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Prompt	

AuthenLcaLon	

Success	 Failure	

Backdoor	
e.g.,	strcmp()	

	

Can	we	determine		
the	input	needed	to		
reach	the	success	
funcLon,	just	by		
analyzing	the	code?	
	
The	answer	is	NO	
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Input Determinism 
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Prompt	

AuthenLcaLon	

Success	 Failure	

Backdoor	
e.g.,	strcmp()	

	

Can	we	determine		
the	input	needed	to		
reach	the	success	
funcLon,	just	by		
analyzing	the	code?	
	
The	answer	is	YES	
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Modeling Authentication Bypass 
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Prompt	

AuthenLcaLon	

Success	 Failure	

Backdoor	
e.g.,	strcmp()	

	
Easier	to	find!	
	
	
But	how?	
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Finding “Authenticated Point” 

•  Without OS/ABI information 

•  With ABI information 
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"Authentication	
Successful!"	

-  static analysis (data 
references, system calls) 

-  human analyst fallback 

Identify Authenticated Point 
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-  static analysis (program 
slicing) 

"Authentication	
Successful!"	

Compute Authentication Slice 
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 authenticated path 

Path Collection 
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Vulnerability Detection 
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"service:
service"	

"AAA:
XXX"	
"BBB:
YYY"	
"CCC:
ZZZ"	
...	

-  can the attacker determine a 
concrete authenticating input 
via program analysis? 
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Bootloader Vulnerabilities 
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BL1/BootROM 

BL2 BL31 

Android Kernel 
(boot) 

Trusted OS (tz) 

BL33 

EL
3 

EL
1 

Secure World 

Non-Secure 
World 

Trusted Apps 

Android Framework/
Apps (system/data) 

EL
0 

Writeable 
Storage 

Bootloader Vulnerabilities 
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Two Malice Models 

Memory Corruption 
 
 

 "Is data, read from 
writeable storage, used 
unsafely in memory 
operations?" 

 
 (can result in bricking, 
device compromise, and 
even TrustZone 
compromise!) 

Unsafe Unlock 
 
 

 "Can the device be unlocked 
without triggering a user data 
wipe?" 

 
 (can result in data 
compromise) 
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MulL-tag	
Taint	

PropagaLon	
	

Under-
constrained	
Symbolic	
ExecuLon	

Taint	Sources	

Writeable	
Storage	

Symbolic Taint Propagation 

Taint	Sinks	
-  memory	
dereferences	

-  memcpy	
-  loop	
condiLons	

	
	

Writeable 
Storage 
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Results 

Bootloader	 Sources	 Sinks	 Alerts	 Memory	
Bugs	

Unsafe	
Unlock	

Qualcomm	
(Latest)	

2	 1	 0	 0	 1	

Qualcomm	(Old)	 3	 1	 4	 1	 1	

NVIDIA	 6	 1	 1	 1	 0	

HiSilicon/Huawei	 20	 4	 15	 5	 1	

MediaTek	 2	 2	 -	 -	 -	

Total	 33	 9	 20	 7	 3	
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AUTOMATING 
VULNERABILITY ANALYSIS 
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From Tools Supporting Humans … 
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High effectiveness 
 
Low scalability 
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… To Fully Automated Analysis 
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High scalability 
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DARPA Grand Challenges 

Self-driving Cars Robots 
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DARPA Cyber Grand Challenge 

Programs! 
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DARPA	Cyber	Grand	Challenge	(CGC)	
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DARPA Cyber Grand Challenge 

•  CTF-style competition 
•  Autonomous Cyber-Reasoning Systems (CRSs) 

attack and defend a number of services (binaries)  

•  No human in the loop 

•  A first qualification round decided the 7 finalists 

•  Final event was on August 4, 2016 during DefCon 
–  Shellphish came in 3rd place 

•  Significant cash prizes 
–  750K for qualification, 2M for win (750K for 3rd place) 
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CGC Results 
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Summary 

•  Internet of Things 
–  explosive growth of devices with embedded software 
–  many interesting security challenges 

•  Binary analysis 
–  key tool to hunt for IOT vulnerabilities 
–  delivers powerful results, but faces scalability issues 
–  promising approach is to combine analysis techniques 
    (e.g., fuzzing and symbolic execution)  

•  angr 
–  UCSB open-source binary analysis software  
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Thank You! 
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