
© Fraunhofer FKIE

Behavior-Driven Development in Malware Analysis:
Can it Improve the Malware Analysis Process?

Thomas Barabosch
thomas.barabosch@fkie.fraunhofer.de
SPRING 2015, Neubiberg bei München

© Cyber Defense Research Group, Fraunhofer FKIE

2

REIMPLEMENTATION TASK

© Cyber Defense Research Group, Fraunhofer FKIE

3

Problem Statement: REimplementation task

 REimplentation of certain algorithms

 DGA, e.g. network detection, anticipation of CC-
servers

 Crypto, e.g. for opening network traffic

 Fundamental part of the malware analysis process

 System specifications given by malware sample

 Hypothesize and corroborate hypotheses until system
specifications derived and implemented

© Cyber Defense Research Group, Fraunhofer FKIE

4

State-of-the-art

 Slicing, e.g. Inspector Gadget [Kolbitsch2010]

 Still needs manual intervention

 Cannot cope with obfuscated code

 Iterative Reengineering Process (Smalltalk to Java,
documentation available) [Durelli2010]

 Modern malware analysis processes are already agile
(SCRUM) [Plohmann2013]

© Cyber Defense Research Group, Fraunhofer FKIE

5

Current situation

 Scientific state-of-the-art solutions

 are not publicly available

 do not work with current malware

 at least without preparations like deobfuscation

 Most Analysts merely translate from machine code to higher
language

 Code’s correctness is not ensured

 Code’s readability is often very poor

 Colleagues have a hard time during integration

© Cyber Defense Research Group, Fraunhofer FKIE

6

What do we need in order to improve the malware analysis process?

 Inspector Gadget on steroids!

 Unlikely: too many unresolved problems

 Change the way how we think about the
REimplementation task

 describing observations in clear, spoken language

 continuously ensuring the correctness of the code
during reimplementation

 writing code documentation on the go

© Cyber Defense Research Group, Fraunhofer FKIE

7

*-DRIVEN-DEVELOPMENT

© Cyber Defense Research Group, Fraunhofer FKIE

8

In the beginning there was Software Testing...

 Main objective: showing quality of a software to stake-
holders

 Test whether a software does what it is supposed to do

 Find defects and failures in a software

 Input space is at least very large…

 But also test non-functional requirements

 Performance, Scalability, Usability, Reliability, …

 Problems

 Infrequent testing due to long testing circles (e.g. Waterfall
model)

 Code coverage

© Cyber Defense Research Group, Fraunhofer FKIE

9

Test Driven Development (TDD)

Source: http://luizricardo.org/wordpress/wp-content/upload-
files/2014/05/tdd_flow.gif

 Short development cycle

 Write a failing test

 Write code to make the test pass

 Refactor the code

 Ideally ensures 100%
coverage

 Small and comprehensive
code base due to frequent
refactoring

 Tests serve as a
documentation of the code

© Cyber Defense Research Group, Fraunhofer FKIE

10

Behavior Driven Development (BDD)

 BDD focuses on a clear understanding of the
software’s behavior rather then modules,
functions, etc.

 Test cases are formulated in natural language

 Hoare logic -> {P} C {Q}

 BDD community still discusses… [North2015]

© Cyber Defense Research Group, Fraunhofer FKIE

11

Behavior Driven Development Example

https://en.wikipedia.org/wiki/Behavior-driven_development

© Cyber Defense Research Group, Fraunhofer FKIE

12

BDD in the malware analysis process

 First pinpoint the algorithm in the binary

 Find entry point and exits

 Extract initial test data for acceptance test and state
acceptance test

Source: https://trak-1.com/wp-content/uploads/2014/10/haystack.jpg

© Cyber Defense Research Group, Fraunhofer FKIE

13

BDD in the malware analysis process

 Then we enter a cycle consisting of four steps

 (1) Observe behavior statically/dynamically and gather test
data

 (2) Write a failing test that expresses clearly the
observations in natural language

 (3) Write code that satisfies the observations and passes
the test

 (4) Refactor code

© Cyber Defense Research Group, Fraunhofer FKIE

14

BDD in the malware analysis process

Observe

Test

Code

Refactor

© Cyber Defense Research Group, Fraunhofer FKIE

15

Putting the first step under the microscope

 Top-Down-Approach

 Getting a rough overview

 Identifying individual features and their interfaces
(e.g. function calls)

 Gather test data at interfaces (input/output)

 Use this data for mocking in the next step

 Mock interfaces of submodules at first

© Cyber Defense Research Group, Fraunhofer FKIE

16

Benefits of BDD in malware analysis

 Writing an observation down in simple words

 reflect, understand, explain

 “If you can't explain it simply, you don't
understand it well enough.” (attributed to Albert
Einstein)

 Delivery of concise code that comes with
examples

 Insurance that the code works continuously

© Cyber Defense Research Group, Fraunhofer FKIE

17

Possible pitfalls

 Getting started

 Identify the interfaces

 Guess related API calls…

 Then write first end-to-end acceptance test

 Getting lost in details

 Gathering to much irrelevant test data

 Writing to many unnecessary tests

© Cyber Defense Research Group, Fraunhofer FKIE

18

CASE STUDY: NYMAIM

© Cyber Defense Research Group, Fraunhofer FKIE

19

Nymaim

 Nymaim is a malware dropper

 But also credential stealer, SOCKS, etc.

 Heavily obfuscated -> Won’t decompile

 See Spring 2014 presentation of [Plohmann2014]

© Cyber Defense Research Group, Fraunhofer FKIE

20

 Unpacked Dridex

 Regular functions

 No strange constants

 Resolved imports

 Reasonable control
flow

 …

© Cyber Defense Research Group, Fraunhofer FKIE

21

 Unpacked Nymaim

 Irregular functions

 Function entries

 Function ends

© Cyber Defense Research Group, Fraunhofer FKIE

22

 Unpacked Nymaim

 Irregular functions

 Function entries

 Function ends

 Strange constants

© Cyber Defense Research Group, Fraunhofer FKIE

23

 Unpacked Nymaim

 Irregular functions

 Function entries

 Function ends

 Strange constants

 Control flow computed
dynamically

© Cyber Defense Research Group, Fraunhofer FKIE

24

 Unpacked Nymaim

 Irregular functions

 Function entries

 Function ends

 Strange constants

 Control flow computed
dynamically

 Confuses disassembler

© Cyber Defense Research Group, Fraunhofer FKIE

25

Recap: What is a Domain Generation Algorithm
(DGA)?

 Locomotive botnets

There are four classes of DGAs [Barabosch2012]

 Time-dependent/time-independent

 Deterministic/non-deterministic�

[Leder2009]

© Cyber Defense Research Group, Fraunhofer FKIE

26

Nymaim‘s DGA – Tools of trade and resources

 Tools of trade

 Immunity Debugger 1.85

 Mandiant ApateDNS 1.0

 IDA Pro 6.8

 Python 2.7.9

 Behave 1.2.5 [Behave2015]

 Send me an email for source code + IDB

© Cyber Defense Research Group, Fraunhofer FKIE

27

Nymaim‘s DGA – First observations

 Black-boxing shows that

 At first four hard-coded domain are resolved
and contacted

 In case of failure domains are generated and
resolved

 Deterministic: same results in two different
VMs

 Time-dependent: different results when date
changed

 Pinpointing the algorithm

 Breaking on GetSystemTime -> Bingo!

 Input: time

 Output: 30 domain names

© Cyber Defense Research Group, Fraunhofer FKIE

28

Nymaim‘s DGA – Our first test: Acceptance test

 We know already many important parameters

 Interfaces of algorithm

 Also we have gathered a first set of test data

 Time information and list of generated domains

 We write our first end-to-end acceptance test

 It does not pass

 However, once it passes we are done!

© Cyber Defense Research Group, Fraunhofer FKIE

29

Nymaim‘s DGA – Our first test: Acceptance test

© Cyber Defense Research Group, Fraunhofer FKIE

30

Nymaim‘s DGA – Two algorithms

 While stepping over the code we have noticed
that there

 is an initialization

 are two algorithms

 main logic

 PRNG

 For now, we focus on one component at a
time

 Reverse the main logic, mock the rest!

© Cyber Defense Research Group, Fraunhofer FKIE

31

Nymaim‘s DGA – Main logic

© Cyber Defense Research Group, Fraunhofer FKIE

32

Nymaim‘s DGA – Main logic

 Test only the main logic, e.g. choosing of the
TLD

 Mock the rest!

 Might require several scenarios

© Cyber Defense Research Group, Fraunhofer FKIE

33

Nymaim‘s DGA – PRNG

 Next we have a look at the PRNG

 Still we do not want to deal with the seeds

 Input: five integers (4* seed + modulo)

 Output: integer [0, modulo - 1]

 Has side effects on the seeds !

© Cyber Defense Research Group, Fraunhofer FKIE

34

Nymaim‘s DGA – PRNG

© Cyber Defense Research Group, Fraunhofer FKIE

35

Nymaim‘s DGA – PRNG

© Cyber Defense Research Group, Fraunhofer FKIE

36

Nymaim‘s DGA – Initialization

 Now we can focus on the initialization and
seeds

 Seeds are initialized (homework)

 Seeds are updated every time the PRG is called
(trivial)

© Cyber Defense Research Group, Fraunhofer FKIE

37

Nymaim‘s DGA – Results

 Five tests of DGA’s features

 One end-to-end acceptance test

 Readable code

 One class implementing the main logic

 One class implementing the PRNG (strategy pattern)

 One class serving as data structure

© Cyber Defense Research Group, Fraunhofer FKIE

38

Nymaim‘s DGA – Collisions

 Algorithm results in a lot of collisions

 Based on 27300 generated domains (2013-01-01 - 2015-06-30)

© Cyber Defense Research Group, Fraunhofer FKIE

39

Nymaim‘s DGA – Collisions

© Cyber Defense Research Group, Fraunhofer FKIE

40

FUTURE WORK & CONCLUSION

© Cyber Defense Research Group, Fraunhofer FKIE

41

Future Work

 Towards Inspector Gadget on Steroids…

 Deobfuscation

 Feature detection

 More practical

 Try out other testing processes

 Automatic test case generation

 Tools for gathering test data in RE context

© Cyber Defense Research Group, Fraunhofer FKIE

42

Conclusion

 Unfortunately, profound malware analysis
continues to be highly manual work

 The result and efficiency of the
REimplementation task can be improved by
using BDD

 We showed the feasibility of BDD in a case
study on the highly obfuscated DGA of Nymaim

© Cyber Defense Research Group, Fraunhofer FKIE

43

References

 [Barabosch2012] Barabosch et. al., Automatic Extraction of Domain Name
Generation Algorithms from Current Malware, STO-MP-IST-111 2012

 [Behave2015] behave project, http://pythonhosted.org/behave/

 [Cucumber2015] cucumber project, Gherkin
https://github.com/cucumber/cucumber/wiki/Gherkin

 [Durelli2010] Durelli et al., An Iterative Reengineering Process Applying Test-Driven
Development and Reverse Engineering Patterns, 2010

 [Lott2012] Lott, TDRE - Test Driven Reverse Engineering Case Study, http://slott-
softwarearchitect.blogspot.de/2012/02/tdre-test-driven-reverse-engineering.html

 [North2015] Dan North, BDD by Example, http://dannorth.net/2015/04/03/bdd-by-
example/, 2015

 [Plohmann2013] Plohmann et al., Patterns of a Cooperative Malware Analysis
Workflow, Cycon 2013

 [Plohmann2014] Plohmann, Patchwork: Stitching against malware families with IDA
Pro, Spring 2014

 [Kolbitsch2010] Kolbitsch et al., Inspector Gadget:
Automated Extraction of Proprietary Gadgets from Malware Binaries, S&P 2010

https://github.com/cucumber/cucumber/wiki/Gherkin
http://slott-softwarearchitect.blogspot.de/2012/02/tdre-test-driven-reverse-engineering.html
http://slott-softwarearchitect.blogspot.de/2012/02/tdre-test-driven-reverse-engineering.html
http://slott-softwarearchitect.blogspot.de/2012/02/tdre-test-driven-reverse-engineering.html
http://slott-softwarearchitect.blogspot.de/2012/02/tdre-test-driven-reverse-engineering.html
http://slott-softwarearchitect.blogspot.de/2012/02/tdre-test-driven-reverse-engineering.html
http://slott-softwarearchitect.blogspot.de/2012/02/tdre-test-driven-reverse-engineering.html
http://slott-softwarearchitect.blogspot.de/2012/02/tdre-test-driven-reverse-engineering.html
http://slott-softwarearchitect.blogspot.de/2012/02/tdre-test-driven-reverse-engineering.html
http://slott-softwarearchitect.blogspot.de/2012/02/tdre-test-driven-reverse-engineering.html
http://slott-softwarearchitect.blogspot.de/2012/02/tdre-test-driven-reverse-engineering.html
http://slott-softwarearchitect.blogspot.de/2012/02/tdre-test-driven-reverse-engineering.html
http://dannorth.net/2015/04/03/bdd-by-example/
http://dannorth.net/2015/04/03/bdd-by-example/
http://dannorth.net/2015/04/03/bdd-by-example/
http://dannorth.net/2015/04/03/bdd-by-example/
http://dannorth.net/2015/04/03/bdd-by-example/

