
© Fraunhofer FKIE

Behavior-Driven Development in Malware Analysis:
Can it Improve the Malware Analysis Process?

Thomas Barabosch
thomas.barabosch@fkie.fraunhofer.de
SPRING 2015, Neubiberg bei München

© Cyber Defense Research Group, Fraunhofer FKIE

2

REIMPLEMENTATION TASK

© Cyber Defense Research Group, Fraunhofer FKIE

3

Problem Statement: REimplementation task

 REimplentation of certain algorithms

 DGA, e.g. network detection, anticipation of CC-
servers

 Crypto, e.g. for opening network traffic

 Fundamental part of the malware analysis process

 System specifications given by malware sample

 Hypothesize and corroborate hypotheses until system
specifications derived and implemented

© Cyber Defense Research Group, Fraunhofer FKIE

4

State-of-the-art

 Slicing, e.g. Inspector Gadget [Kolbitsch2010]

 Still needs manual intervention

 Cannot cope with obfuscated code

 Iterative Reengineering Process (Smalltalk to Java,
documentation available) [Durelli2010]

 Modern malware analysis processes are already agile
(SCRUM) [Plohmann2013]

© Cyber Defense Research Group, Fraunhofer FKIE

5

Current situation

 Scientific state-of-the-art solutions

 are not publicly available

 do not work with current malware

 at least without preparations like deobfuscation

 Most Analysts merely translate from machine code to higher
language

 Code’s correctness is not ensured

 Code’s readability is often very poor

 Colleagues have a hard time during integration

© Cyber Defense Research Group, Fraunhofer FKIE

6

What do we need in order to improve the malware analysis process?

 Inspector Gadget on steroids!

 Unlikely: too many unresolved problems

 Change the way how we think about the
REimplementation task

 describing observations in clear, spoken language

 continuously ensuring the correctness of the code
during reimplementation

 writing code documentation on the go

© Cyber Defense Research Group, Fraunhofer FKIE

7

*-DRIVEN-DEVELOPMENT

© Cyber Defense Research Group, Fraunhofer FKIE

8

In the beginning there was Software Testing...

 Main objective: showing quality of a software to stake-
holders

 Test whether a software does what it is supposed to do

 Find defects and failures in a software

 Input space is at least very large…

 But also test non-functional requirements

 Performance, Scalability, Usability, Reliability, …

 Problems

 Infrequent testing due to long testing circles (e.g. Waterfall
model)

 Code coverage

© Cyber Defense Research Group, Fraunhofer FKIE

9

Test Driven Development (TDD)

Source: http://luizricardo.org/wordpress/wp-content/upload-
files/2014/05/tdd_flow.gif

 Short development cycle

 Write a failing test

 Write code to make the test pass

 Refactor the code

 Ideally ensures 100%
coverage

 Small and comprehensive
code base due to frequent
refactoring

 Tests serve as a
documentation of the code

© Cyber Defense Research Group, Fraunhofer FKIE

10

Behavior Driven Development (BDD)

 BDD focuses on a clear understanding of the
software’s behavior rather then modules,
functions, etc.

 Test cases are formulated in natural language

 Hoare logic -> {P} C {Q}

 BDD community still discusses… [North2015]

© Cyber Defense Research Group, Fraunhofer FKIE

11

Behavior Driven Development Example

https://en.wikipedia.org/wiki/Behavior-driven_development

© Cyber Defense Research Group, Fraunhofer FKIE

12

BDD in the malware analysis process

 First pinpoint the algorithm in the binary

 Find entry point and exits

 Extract initial test data for acceptance test and state
acceptance test

Source: https://trak-1.com/wp-content/uploads/2014/10/haystack.jpg

© Cyber Defense Research Group, Fraunhofer FKIE

13

BDD in the malware analysis process

 Then we enter a cycle consisting of four steps

 (1) Observe behavior statically/dynamically and gather test
data

 (2) Write a failing test that expresses clearly the
observations in natural language

 (3) Write code that satisfies the observations and passes
the test

 (4) Refactor code

© Cyber Defense Research Group, Fraunhofer FKIE

14

BDD in the malware analysis process

Observe

Test

Code

Refactor

© Cyber Defense Research Group, Fraunhofer FKIE

15

Putting the first step under the microscope

 Top-Down-Approach

 Getting a rough overview

 Identifying individual features and their interfaces
(e.g. function calls)

 Gather test data at interfaces (input/output)

 Use this data for mocking in the next step

 Mock interfaces of submodules at first

© Cyber Defense Research Group, Fraunhofer FKIE

16

Benefits of BDD in malware analysis

 Writing an observation down in simple words

 reflect, understand, explain

 “If you can't explain it simply, you don't
understand it well enough.” (attributed to Albert
Einstein)

 Delivery of concise code that comes with
examples

 Insurance that the code works continuously

© Cyber Defense Research Group, Fraunhofer FKIE

17

Possible pitfalls

 Getting started

 Identify the interfaces

 Guess related API calls…

 Then write first end-to-end acceptance test

 Getting lost in details

 Gathering to much irrelevant test data

 Writing to many unnecessary tests

© Cyber Defense Research Group, Fraunhofer FKIE

18

CASE STUDY: NYMAIM

© Cyber Defense Research Group, Fraunhofer FKIE

19

Nymaim

 Nymaim is a malware dropper

 But also credential stealer, SOCKS, etc.

 Heavily obfuscated -> Won’t decompile

 See Spring 2014 presentation of [Plohmann2014]

© Cyber Defense Research Group, Fraunhofer FKIE

20

 Unpacked Dridex

 Regular functions

 No strange constants

 Resolved imports

 Reasonable control
flow

 …

© Cyber Defense Research Group, Fraunhofer FKIE

21

 Unpacked Nymaim

 Irregular functions

 Function entries

 Function ends

© Cyber Defense Research Group, Fraunhofer FKIE

22

 Unpacked Nymaim

 Irregular functions

 Function entries

 Function ends

 Strange constants

© Cyber Defense Research Group, Fraunhofer FKIE

23

 Unpacked Nymaim

 Irregular functions

 Function entries

 Function ends

 Strange constants

 Control flow computed
dynamically

© Cyber Defense Research Group, Fraunhofer FKIE

24

 Unpacked Nymaim

 Irregular functions

 Function entries

 Function ends

 Strange constants

 Control flow computed
dynamically

 Confuses disassembler

© Cyber Defense Research Group, Fraunhofer FKIE

25

Recap: What is a Domain Generation Algorithm
(DGA)?

 Locomotive botnets

There are four classes of DGAs [Barabosch2012]

 Time-dependent/time-independent

 Deterministic/non-deterministic�

[Leder2009]

© Cyber Defense Research Group, Fraunhofer FKIE

26

Nymaim‘s DGA – Tools of trade and resources

 Tools of trade

 Immunity Debugger 1.85

 Mandiant ApateDNS 1.0

 IDA Pro 6.8

 Python 2.7.9

 Behave 1.2.5 [Behave2015]

 Send me an email for source code + IDB

© Cyber Defense Research Group, Fraunhofer FKIE

27

Nymaim‘s DGA – First observations

 Black-boxing shows that

 At first four hard-coded domain are resolved
and contacted

 In case of failure domains are generated and
resolved

 Deterministic: same results in two different
VMs

 Time-dependent: different results when date
changed

 Pinpointing the algorithm

 Breaking on GetSystemTime -> Bingo!

 Input: time

 Output: 30 domain names

© Cyber Defense Research Group, Fraunhofer FKIE

28

Nymaim‘s DGA – Our first test: Acceptance test

 We know already many important parameters

 Interfaces of algorithm

 Also we have gathered a first set of test data

 Time information and list of generated domains

 We write our first end-to-end acceptance test

 It does not pass

 However, once it passes we are done!

© Cyber Defense Research Group, Fraunhofer FKIE

29

Nymaim‘s DGA – Our first test: Acceptance test

© Cyber Defense Research Group, Fraunhofer FKIE

30

Nymaim‘s DGA – Two algorithms

 While stepping over the code we have noticed
that there

 is an initialization

 are two algorithms

 main logic

 PRNG

 For now, we focus on one component at a
time

 Reverse the main logic, mock the rest!

© Cyber Defense Research Group, Fraunhofer FKIE

31

Nymaim‘s DGA – Main logic

© Cyber Defense Research Group, Fraunhofer FKIE

32

Nymaim‘s DGA – Main logic

 Test only the main logic, e.g. choosing of the
TLD

 Mock the rest!

 Might require several scenarios

© Cyber Defense Research Group, Fraunhofer FKIE

33

Nymaim‘s DGA – PRNG

 Next we have a look at the PRNG

 Still we do not want to deal with the seeds

 Input: five integers (4* seed + modulo)

 Output: integer [0, modulo - 1]

 Has side effects on the seeds !

© Cyber Defense Research Group, Fraunhofer FKIE

34

Nymaim‘s DGA – PRNG

© Cyber Defense Research Group, Fraunhofer FKIE

35

Nymaim‘s DGA – PRNG

© Cyber Defense Research Group, Fraunhofer FKIE

36

Nymaim‘s DGA – Initialization

 Now we can focus on the initialization and
seeds

 Seeds are initialized (homework)

 Seeds are updated every time the PRG is called
(trivial)

© Cyber Defense Research Group, Fraunhofer FKIE

37

Nymaim‘s DGA – Results

 Five tests of DGA’s features

 One end-to-end acceptance test

 Readable code

 One class implementing the main logic

 One class implementing the PRNG (strategy pattern)

 One class serving as data structure

© Cyber Defense Research Group, Fraunhofer FKIE

38

Nymaim‘s DGA – Collisions

 Algorithm results in a lot of collisions

 Based on 27300 generated domains (2013-01-01 - 2015-06-30)

© Cyber Defense Research Group, Fraunhofer FKIE

39

Nymaim‘s DGA – Collisions

© Cyber Defense Research Group, Fraunhofer FKIE

40

FUTURE WORK & CONCLUSION

© Cyber Defense Research Group, Fraunhofer FKIE

41

Future Work

 Towards Inspector Gadget on Steroids…

 Deobfuscation

 Feature detection

 More practical

 Try out other testing processes

 Automatic test case generation

 Tools for gathering test data in RE context

© Cyber Defense Research Group, Fraunhofer FKIE

42

Conclusion

 Unfortunately, profound malware analysis
continues to be highly manual work

 The result and efficiency of the
REimplementation task can be improved by
using BDD

 We showed the feasibility of BDD in a case
study on the highly obfuscated DGA of Nymaim

© Cyber Defense Research Group, Fraunhofer FKIE

43

References

 [Barabosch2012] Barabosch et. al., Automatic Extraction of Domain Name
Generation Algorithms from Current Malware, STO-MP-IST-111 2012

 [Behave2015] behave project, http://pythonhosted.org/behave/

 [Cucumber2015] cucumber project, Gherkin
https://github.com/cucumber/cucumber/wiki/Gherkin

 [Durelli2010] Durelli et al., An Iterative Reengineering Process Applying Test-Driven
Development and Reverse Engineering Patterns, 2010

 [Lott2012] Lott, TDRE - Test Driven Reverse Engineering Case Study, http://slott-
softwarearchitect.blogspot.de/2012/02/tdre-test-driven-reverse-engineering.html

 [North2015] Dan North, BDD by Example, http://dannorth.net/2015/04/03/bdd-by-
example/, 2015

 [Plohmann2013] Plohmann et al., Patterns of a Cooperative Malware Analysis
Workflow, Cycon 2013

 [Plohmann2014] Plohmann, Patchwork: Stitching against malware families with IDA
Pro, Spring 2014

 [Kolbitsch2010] Kolbitsch et al., Inspector Gadget:
Automated Extraction of Proprietary Gadgets from Malware Binaries, S&P 2010

https://github.com/cucumber/cucumber/wiki/Gherkin
http://slott-softwarearchitect.blogspot.de/2012/02/tdre-test-driven-reverse-engineering.html
http://slott-softwarearchitect.blogspot.de/2012/02/tdre-test-driven-reverse-engineering.html
http://slott-softwarearchitect.blogspot.de/2012/02/tdre-test-driven-reverse-engineering.html
http://slott-softwarearchitect.blogspot.de/2012/02/tdre-test-driven-reverse-engineering.html
http://slott-softwarearchitect.blogspot.de/2012/02/tdre-test-driven-reverse-engineering.html
http://slott-softwarearchitect.blogspot.de/2012/02/tdre-test-driven-reverse-engineering.html
http://slott-softwarearchitect.blogspot.de/2012/02/tdre-test-driven-reverse-engineering.html
http://slott-softwarearchitect.blogspot.de/2012/02/tdre-test-driven-reverse-engineering.html
http://slott-softwarearchitect.blogspot.de/2012/02/tdre-test-driven-reverse-engineering.html
http://slott-softwarearchitect.blogspot.de/2012/02/tdre-test-driven-reverse-engineering.html
http://slott-softwarearchitect.blogspot.de/2012/02/tdre-test-driven-reverse-engineering.html
http://dannorth.net/2015/04/03/bdd-by-example/
http://dannorth.net/2015/04/03/bdd-by-example/
http://dannorth.net/2015/04/03/bdd-by-example/
http://dannorth.net/2015/04/03/bdd-by-example/
http://dannorth.net/2015/04/03/bdd-by-example/

