
APATE Interpreter - A Kernel Hook Rule Engine

Christoph Pohl 1,2,3 Michael Meier 3 Hans-Joachim Hof 1,2

1MuSe - Munich IT-Security Research Group

2University of Applied Sciences Munich

3Fraunhofer FKIE / University of Bonn

July 2, 2015

C.Pohl B.Hive - A Zero configuration Forms Honeypot 1 / 30

ToC

1 Introduction

2 Related Work

3 Proposed Solution

4 Evaluation?

5 What is the research impact?

6 Conclusion

7 Questions

8 References

C.Pohl B.Hive - A Zero configuration Forms Honeypot 2 / 30

Introduction to APATE

APATE Interpreter is just a small part of APATE Kernel Module
The APATE Kernel Module is a sub part of:

Field of Research

Decoy and Monitoringstrategies for Linux Systems with VMI,
Kernelmodules, adapted uLibC and BusyBox

C.Pohl B.Hive - A Zero configuration Forms Honeypot 3 / 30

Features of APATE

[1] Pohl, C., Hof, H. J., and Meier, M.
Apate - A Linux Kernel Module for High Interaction Honeypots.
In SECURWARE 2015, The Ninth International Conference on
Emerging Security Information, Systems and Technologies (Aug.
2015).

Features

Change the behavior of Linux Kernel 3.x with a fast rule engine.

Rules can have any parameter from kernel as input

APATE is able to build logs upon the rules

APATE has some decoy strategies to prevent timing attacks,
debugging and forensics

Rules can be built with a high level turing complete language

APATE Kernel is part of Kernel or LKM

C.Pohl B.Hive - A Zero configuration Forms Honeypot 4 / 30

Function Manipulation

Call Function

Interception (Hook)

Original Function

Interception (Hook)

Rules

Return

Figure. Conceptual overview for function manipulation (just a hook)

C.Pohl B.Hive - A Zero configuration Forms Honeypot 5 / 30

Rule Generation

rules.apate

Apate Compiler

apaterules.c Apate sources (*.c)

gcc

Apate LKM (apate.ko)

Figure. Rule generation in APATE Kernel for LKM

C.Pohl B.Hive - A Zero configuration Forms Honeypot 6 / 30

Adressed Problem

Adressed Problem within APATE Kernel

APATE Kernel compiles RULES with Flex and Bison to C

Kernel needs recompilation (or recompilation from LKM)

Rules can not be injected on the fly

Kernel Hotpatching over VMI is not suitable

Anti Forensics (or dirty tricks) are hard to integrate in Compiler

Regex Rules or iftable rule engine and other stuff are not suitable

C.Pohl B.Hive - A Zero configuration Forms Honeypot 7 / 30

Some example I

d e f i n e c1 , c2 , c3 as c o n d i t i o n
d e f i n e r1 , r 2 as r u l e
d e f i n e a1 , a2 as a c t i o n
d e f i n e cb1 as c o n d i t i o n b l o c k
d e f i n e r c 1 as r u l e c h a i n
d e f i n e sy1 as s y s c a l l

l e t c1 be t e s t f o r p n a m e
l e t c2 be t e s t f o r p a r a m
l e t c3 be t e s t f o r u i d
l e t a1 be manipu lateparam
l e t a2 be l o g
l e t sy1 be s y s o p e n

l e t cb1 be {(c1 (” mysql ”) && c2 (0 ; ” / v a r / l i b \

C.Pohl B.Hive - A Zero configuration Forms Honeypot 8 / 30

Some example II

/ mysql /∗”))}

l e t r 1 be {cb1−>a1 (0 ; ” / v a r / l i b / mysql /∗” \
; ” / honey / mysql /”)}

l e t r 2 be {{ c3 (”>”,0)}−>a2 ()}
l e t r c 1 be { r2 , : r1 } // : d e f i n e s e x i t

b i n d r c 1 to sy1

In words: If process is mysql and path of syscall wants to have
/var/lib/mysql/∗ then redirect to /honey/mysql/∗. Whenever the user is
not root, log the syscall. Process the first rule first and then the second
one, despite the first rules matches or not. Be aware that this is
transparent to the user.

C.Pohl B.Hive - A Zero configuration Forms Honeypot 9 / 30

Research Question

Research Question

How to generate a rule engine in kernel space to manipulate kernel
behavior and sensors

How to implement it in a performant way

How to enable the rule engine to generate rules on the fly

How to inject rules from host

How to hide the engine from disassembler and debugger

C.Pohl B.Hive - A Zero configuration Forms Honeypot 10 / 30

Related Work

[6, 2] Sebek, just logging and no manipulation

[19, 9, 8] VMI-based approaches, just logging and no manipulation

[18] SE-Linux, Hooking, Manipulation and Logging (even some rule
engine), but not designed for honeypot purposes, not able to hook
everything, focused on hardening (opposite target), no decoy
functionalities. Language is not turing complete.

[13] GRSecurity with PAX [15], somewhat the same than SE-Linux

C.Pohl B.Hive - A Zero configuration Forms Honeypot 11 / 30

Proposed Solution

Generate an interpreter for hook and sensor behavior

Solution

The interpreter is a runtime-like engine

The language is assembly like (or something like bytecode)

The high level language gets compiled into APATE assembly

There are special machine intructions for hooking, decoyness, sensors
and further more

The assembly can be fragmented over real memory

The runtime can use real and virtual (own) adress space

C.Pohl B.Hive - A Zero configuration Forms Honeypot 12 / 30

Conceptual Overview

Call Function

Interception (Hook)

Original Function

Interception (Hook)

Interpreter

Rules

Return

Figure. Conceptual overview

C.Pohl B.Hive - A Zero configuration Forms Honeypot 13 / 30

Rule Generation

rules.apate

Apate Compiler

apaterules.as

Apate LKM (apate.ko)

Figure. Rule generation in APATE Kernel for LKM with Interpreter

C.Pohl B.Hive - A Zero configuration Forms Honeypot 14 / 30

The Interpreter

Description Interpreter

Register Based Interpreter

Adressable Stack (in fact a register)

Fixed width intruction set

Shortcut instructions

Hotpatchable over VMI

Interpreter can be fragmented

C.Pohl B.Hive - A Zero configuration Forms Honeypot 15 / 30

The Interpreter

Description Interpreter Register

Interpreter has 12 fixed size Register

0− 6 just like eax,ebx...(64 Bit)

7 last adress (like eip) (64 Bit (can be shared for kernel memory
space))

8− 11 bitmaps for locking, real/virtual memory . . . (8 Bit)

Whenever the register are “out of space”, the interpreter uses the
adressable stack

C.Pohl B.Hive - A Zero configuration Forms Honeypot 16 / 30

The Interpreter

Description Interpreter Stack

Interpreter has fixed adressable stack (12 Elements)

Each stack element has 64 Bit

Stack can grow until kernel memory limit

Stack can not shrink (despite one uses the dealloc instruction from
interpreter)

C.Pohl B.Hive - A Zero configuration Forms Honeypot 17 / 30

The Interpreter

Instruction Set

Any instruction has two params < opcode >< dest >< src >

There are about 20 opcodes (+shortcuts)

p.ex j(u)mp, p(u)sh, p(u)ll, c(o)mp(are)

C.Pohl B.Hive - A Zero configuration Forms Honeypot 18 / 30

The Interpreter

Shortcuts

A shortcut is a special opcode p.ex. for decision making in rules

Other shortcuts are for logging purposes

Other shortcuts are for convenience or speed

C.Pohl B.Hive - A Zero configuration Forms Honeypot 19 / 30

Hot Patching

Hot Patching

Assembly Code can be “patched” over VMI

Code can be hidden in “lost” data segments of real assembly

APATE - Assembly can be generated by the interpreter on the fly

C.Pohl B.Hive - A Zero configuration Forms Honeypot 20 / 30

What about evaluation?

What about evaluation?

APATE Kernel works quite well

Interpreter is under development

I can only measure some low level functions of the interpreter (makes
no sense to measure them)

At moment each part of interpreter works more or less well, but it is
not combined yet

C.Pohl B.Hive - A Zero configuration Forms Honeypot 21 / 30

What can you do with it?

What can you do with it?

You can change the behavior of kernel functions during runtime

You can log everything (Apate has different logging functionalities)

You can build rules which can build rules or code themself (for
example to react on user input or to enable/disable sensors)

C.Pohl B.Hive - A Zero configuration Forms Honeypot 22 / 30

What is the research impact?

What is the research impact?

It is the first honeypot interpreter for a Linux Kernel (OK thats just
engineering)

Some new technologies for anti forensics (Playing with IDA Pro),
usable to decoy honeypots, lure debuggers and even disassembling
tools

Usable as base framework or to manipulate the kernel during runtime,
based on user behavior to enable/disable sensors or function behavior

C.Pohl B.Hive - A Zero configuration Forms Honeypot 23 / 30

Conclusion

Conclusion

With a low level runtime it is possible to manipulate the Kernel
behavior and sensors on the fly

It is possible to do this in a performant way (first results)

It is possible to generate rules with another rules during runtime

It is possible to harden this against disassembling and debugging

C.Pohl B.Hive - A Zero configuration Forms Honeypot 24 / 30

Any Questions?

Any Questions

Say: “OK Google”...
Email: c00clupea@gmail.com

C.Pohl B.Hive - A Zero configuration Forms Honeypot 25 / 30

References I

[1] Balas, E.
Sebek: Covert Glass-Box Host Analysis.
;login: THE USENIX MAGAZINE, December 2003, Volume 28, Number 6 (2003).

[2] Dornseif, M., Holz, T., and Klein, C.
NoSEBrEaK - Attacking Honeynets.
In Proceedings of the 2004 IEEE Workshop on Information Assurance and Security (June
2004).

[3] Fox, M., Giordano, J., Stotler, L., and Thomas, A.
Selinux and grsecurity: A case study comparing linux security kernel enhancements.

[4] Garfinkel, T., and Rosenblum, M.
A virtual machine introspection based architecture for intrusion detection.
In In Proc. Network and Distributed Systems Security Symposium (2003), pp. 191–206.

[5] Herley, C.
Security, cybercrime, and scale.
Communications of the ACM 57, 9 (Sept. 2014), 64–71.

[6] Holz, T., and Raynal, F.
Detecting honeypots and other suspicious environments.
In Proceedings from the Sixth Annual IEEE Systems, Man and Cybernetics (SMC)
Information Assurance Workshop, 2005. (2005), IEEE, pp. 29–36.

C.Pohl B.Hive - A Zero configuration Forms Honeypot 26 / 30

References II

[7] Honeynet Project.
Know Your Enemy: Sebek.

[8] Jiang, X., and Wang, X.
“Out-of-the-Box” Monitoring of VM-Based High-Interaction Honeypots.
In Recent Advances in Intrusion Detection (2007), Springer Berlin Heidelberg, pp. 198–218.

[9] Lengyel, T. K., Neumann, J., Maresca, S., Payne, B. D., and Kiayias, A.
Virtual machine introspection in a hybrid honeypot architecture.
In CSET’12: Proceedings of the 5th USENIX conference on Cyber Security
Experimentation and Test (Aug. 2012), USENIX Association.

[10] Ligh, M. H., Case, A., Levy, J., and Walters, A.
The Art of Memory Forensics: Detecting Malware and Threats in Windows, Linux, and
Mac Memory.
John Wiley & Sons, 2014.

[11] Marlow, S.
Haskell 2010 language report.
https://www.haskell.org/onlinereport/haskell2010/, 2010.
Visited 25.02.2015.

C.Pohl B.Hive - A Zero configuration Forms Honeypot 27 / 30

References III

[12] NSA (Initial developer).
Selinux.
https://www.nsa.gov/research/selinux/index.shtml, 2009.
Visited 25.02.2015.

[13] Open Source Security.
grsecurity.
https://grsecurity.net, 2015.
Visited 25.02.2015.

[14] OpenBSD.
Pf: The openbsd packet filter.
http://www.openbsd.org/faq/pf/, 2015.
Visited 25.02.2015.

[15] PAX Team.
Pax.
https://pax.grsecurity.net, 2015.
Visited 25.02.2015.

[16] Pohl, C.
Github apate sourcecode gpl2.
https://github.com/c00clupea/apate, 2015.
Visited 25.02.2015.

C.Pohl B.Hive - A Zero configuration Forms Honeypot 28 / 30

References IV

[17] Pohl, C., Hof, H. J., and Meier, M.
Apate - A Linux Kernel Module for High Interaction Honeypots.
In SECURWARE 2015, The Ninth International Conference on Emerging Security
Information, Systems and Technologies (Apr. 2015).

[18] Smalley, S., Vance, C., and Salamon, W.
Implementing selinux as a linux security module.
NAI Labs Report 1, 43 (2001), 139.

[19] Song, C., Ha, B., and Zhuge, J.
Know Your Tools: Qebek – Conceal the Monitoring — The Honeynet Project.
http://www.honeynet.org/papers/KYT qebek.
Visited 25.02.2015.

[20] Torvalds, L.
Linux kernel release 3.x source linux/sched.h.
https://github.com/torvalds/linux/blob/master/include/linux/sched.h, 2015.
Visited 25.02.2015.

[21] (TurboBorland), T. B.
Modern linux rootkits 101.
http://turbochaos.blogspot.de/2013/09/linux-rootkits-101-1-of-3.html, 2013.
Visited 25.02.2015.

C.Pohl B.Hive - A Zero configuration Forms Honeypot 29 / 30

References V

[22] Wagener, G., State, R., Dulaunoy, A., and Engel, T.
Self Adaptive High Interaction Honeypots Driven by Game Theory.
In Stabilization, Safety, and Security of Distributed Systems Lecture Notes in Computer
Science (Berlin, Heidelberg, 2009), Springer Berlin Heidelberg, pp. 741–755.

C.Pohl B.Hive - A Zero configuration Forms Honeypot 30 / 30

	Introduction
	Related Work
	Proposed Solution
	Evaluation?
	What is the research impact?
	Conclusion
	Questions
	References

